A empresa norte-americana Space Exploration Technologies Corp. (SpaceX) realizou o lançamento de 22 novos satélites Starlink v2.0 Mini.
O lançamento da missão Starlink G7-13 teve lugar às 0034:00UTC do dia 10 de Fevereirode 2024 a partir do Complexo de Lançamento SLC-4E da Base das Forças Espaciais de Vandenberg, Califórnia, usando o foguetão Falcon 9-296 (B1071.14) cujo primeiro estágio foi recuperado na plataforma flutuante Of Course I Still Love You (OCISLY) a cerca de 600 km no Oceano Pacífico.
O objectivo da missão foi o de colocar os 22 satélites numa órbita com um perigeu a 286 km, apogeu a 295 km e inclinação orbital de 53º.
Lançamento da missão Starlink G7-13
O rebocador Debra C e a plataforma flutuante OCISLY deixaram o Porto de Long Beach, Califórnia, a 1 de Fevereiro, pelas 1815UTC, enquanto a embarcação de apoio Go Beyond (anteriormente designado “Go Crusader”) deixava o seu porto de abrigo às 1915UTC do mesmo dia, tendo no entanto regressado ao seu porto devido aos adiamentos devido às más condições atmosféricas (chegando ao porto de abrigo pelas 0736UTC do dia 3 de Fevereiro. Voltaria a deixar o Porto de Long Beach às 1822UTC do dia 4 de Fevereiro.
No dia 7 de Fevereiro a contagem decrescente para o lançamento seroa suspensa a T-43s, sem a SpaceX dar qualquer razão para o sucedido, sendo posteriormente adiado para o dia 9 de Fevereiro.
A cerca de dez horas do lançamento procedeu-se à activação eléctrica do foguetão Falcon-9. Tanto o lançador como a sua carga são submetidos a uma série de verificações testes antes do início do abastecimento do querosene RP-1. O Director de Voo consulta os controladores a T-38m, determinando assim se tudo está pronto para o início do abastecimento do lançador. O processo de abastecimento de RP-1 inicia-se a T-35m no primeiro estágio, seguindo-se o início do abastecimento do oxigénio líquido (LOX) na mesma altura. O abastecimento de LOX ao segundo estágio inicia-se a T-16m.
A fase terminal da contagem decrescente inicia-se com os motores a serem condicionados termicamente para o lançamento a T-7m. A T-1m é enviado um comando para o computador de voo para iniciar as verificações pré-lançamento e o sistema de supressão sónica é activado na plataforma de lançamento inundada por milhões de litros de água. Por esta altura os tanques de propelente também são pressurizados. A T-45s o Director de Lançamento da SpaceX verifica se todos os parâmetros estão prontos para a missão, sendo também verificado que o espaço aéreo está pronto para o lançamento. A sequência de ignição é iniciada a T-3s. A T=0s o foguetão abandona a plataforma.
Abandonando a plataforma de lançamento, o Falcon-9 inicia uma série de manobras para se colocar na trajectória de voo correcta. A fase MaxQ, de máxima pressão dinâmica, é atingida a T+1m 12s, sendo nesta altura que o lançador atinge o ponto mais elevado de ‘stress’ mecânico na sua estrutura.
O final da queima do primeiro estágio (MECO – Main Engine Cut-Off) ocorre a T+2m 26s, dando-se três segundos depois a separação entre o primeiro e o segundo estágio, com este a entrar em ignição a T+2m 30s (SES-1 Stage Engine Start 1).
A ejecção das duas metades da carenagem de protecção ocorre a T+3m 3s, com a queima de reentrada do primeiro estágio a ocorrer entre T+6m 8s e T+6m 31s. A queima de aterragem ocorre entre T+7m 58s e T+8m 23s, sendo recuperado com sucesso.
O final da primeira queima do segundo estágio – (SECO-1 Second Engine Cut Off 1) – ocorre a T+8m 38s. Após uma fase orbital não propulsionada na órbita de parqueamento, o segundo estágio executa uma nova queima entre T+53m 28s e T+53m 29s, com a separação dos satélites Starlink a ocorrer a T+1h 2m 22s. Todos os satélites irão posteriormente elevar as suas órbitas para uma altitude operacional de 525 km.
A constelação Starlink
A SpaceX projectou a Starlink para conectar utilizadores de Internet com baixa latência, oferecer serviços de distribuição de elevada largura de banda, fornecendo uma cobertura continua em todo o mundo usando uma rede de milhares de satélites na órbita terrestre baixa, especialmente em lugares onde a conectividade é baixa ou inexistente como, por exemplo, em lugares rurais. Os satélites Starlink também darão cobertura em locais onde os serviços existentes são instáveis ou de elevado custo.
Com um desenho de painel plano contendo múltiplas antenas de alto rendimento e um único painel solar, cada satélite Starlink pesa cerca de 260 kg, permitindo à SpaceX uma produção em massa e tirar todo o proveito da capacidade de lançamento do Falcon-9. Para ajustar a posição em órbita, manter a altitude pretendida e posterior remoção orbital, os satélites Starlink possuem propulsores do tipo Hall alimentados a krípton. Sendo injectados a uma altitude de 290 km usarão este mesmo sistema para elevar as suas órbitas assim que sejam concluídas as verificações. Antes de elevar a órbita, os engenheiros da SpaceX irão realizar uma revisão de dados para garantir que todos os satélites Starlink estão a operar como pretendido.
Desenhados e construídos usando a mesma tecnologia que as cápsulas Dragon, cada satélite está equipado com Startracker que permite apontar os satélites com precisão. Nesta iteração a SpaceX incrementou a capacidade de espectro para o utilizador final mediante melhorias, permitindo uma maximização na utilização das bandas Ka e Ku. Os satélites são também capazes de detectar lixo espacial em órbita e evitar a colisão de modo autónomo.
Os satélites Starlink estão na linha da frente na mitigação de detritos em órbita, atingindo ou excedendo todas as leis padronizadas da indústria aeroespacial. No fim do ciclo de vida, os satélites irão usar a própria propulsão que têm a bordo para procederem à remoção orbital no decurso de uns poucos meses. No improvável evento da propulsão falhar, estes satélites irão queimar na atmosfera terrestre no período compreendido entre 1 a 5 anos, tempo significativamente inferior que as centenas ou milhares de anos necessários para grandes altitudes. De notar que todos os componentes estão projectados para uma total desintegração.
A Starlink oferece um serviço de Internet em zonas dos Estados Unidos da América e no Canadá ao fim de seis lançamentos, rapidamente expandindo-se para uma cobertura global nas zonas populacionais após vinte e quatro lançamentos.
Estando ainda na fase inicial de injecção orbital, os painéis solares encontram-se numa posição de baixo atrito e o conjunto dos próprios Starlinks estando ainda muito próximos uns dos outros faz com sejam muito visíveis a olho nu a partir do solo aquando da sua passagem. Quando os satélites atingem a altitude operacional, as suas orientações mudam e os satélites começam a ficar significativamente menos visíveis a partir do solo.
Durante todas as operações de voo, a SpaceX partilha dados de monitorização de alta fidelidade com outras operadoras de satélites através do 18.º esquadrão do controlo espacial da Força Aérea Americana. Adicionalmente, a SpaceX irá disponibilizar aos grupos de astronomia com informação de previsão do tipo TLE’s (two-line elements) antes de qualquer lançamento para que os astrónomos possam coordenar as observações com a passagem dos satélites.
Lançamento | Veículo | 1.º estágio | Local Lançamento | Data Hora (UTC) | Carga |
2023-203 | 283 | B1058.19 | CCSFS, SLC-40 | 23/Dez/23 05:33:00 | Starlink G6-32 (x23) F129 [v2.0 Mini L42] |
2023-211 | 285 | B1069.12 | CCSFS, SLC-40 | 29/Dez/23 04:01:40 | Starlink G6-36 (x23) F130 [v2.0 Mini L43] |
2024-002 | 286 | B1082.1 | VSFB, SLC-4E | 03/Jan/24 03:44:20 | Starlink G-T1 (v2.0 Mini D2D x6) [v2.0 Mini D2D L01] Starlink G7-9 (v2.0 Mini x15) F131 [v2.0 Mini L44] |
2024-005 | 288 | B1067.16 | CCSFS, SLC-40 | 07/Jan/24 22:35:40 | Starlink G6-35 (x23) F132 [v2.0 Mini L45] |
2024-011 | 289 | B1061.18 | VSFB, SLC-4E | 14/Jan/24 08:59:30 | Starlink G7-10 (x22) F133 [v2.0 Mini L46] |
2024-012 | 290 | B1073.12 | CCSFS, SLC-40 | 15/Jan/24 01:52:00 | Starlink G6-37 (x23) F134 [v2.0 Mini L47] |
2024-017 | 292 | B1063.16 | VSFB, SLC-4E | 24/Jan/24 00:35:00 | Starlink G7-11 (x22) F135 [v2.0 Mini L48] |
2024-019 | 293 | B1062.18 | KSC, LC-39A | 28/Jan/24 01:10:00 | Starlink G6-38 (x23) F136 [v2.0 Mini L49] |
2024-020 | 294 | B1075.9 | VSFB, SLC-4E | 29/Jan/23 05:57:20 | Starlink G7-12 (x22) F137 [v2.0 Mini L50] |
2024-027 | 295 | B1071.14 | VSFB, SLC-4E | 10/Fev/24 00:34:00 | Starlink G7-13 (x22) F138 [v2.0 Mini L51] |
Os satélites Starlink v2.0 Mini
A missão Starlink G6-1 foi a primeira missão a transportar os satélites Starlink da próxima geração, os Starlink v2.0. De notar que a SpaceX iniciou os lançamentos em apoio da segunda geração Starlink (Starlink Gen 2) com o seu último lançamento orbital de 2022 (missões Starlink G5). Porém, estas missões utilizaram satélites Starlink v1.5 em vez dos satélites Starlink v2.0.
A SpaceX tem feito várias alterações ao desenho dos satélites de segunda geração. Os satélites lançados a 27 de Fevereiro de 2023, são uma versão reduzida dos satélites Starlink v2.0 – denominado ‘Starlink v2.0 Mini’. Na missão Starlink G6-1 foram lançados 21 satélites, isto é, menos de metade dos satélites que a SpaceX tem colocado em órbita com os satélites Starlink v1.5. Assim, a massa dos Starlink v2.0 estará entre os 750 kg e os 800 kg, que é mais do dobro da massa dos satélites Starlink v1.5 e mais de metade da massa dos satélites Starlink v2.0 que serão lançados na Starship.
Os novos satélites podem fornecer quatro vezes a capacidade dos satélites anteriores, o que apesar de haver menos satélites por lançamento, fornecem uma maior capacidade do sistema.
Os satélites Starlink v2 Mini também introduzem um novo propelente para os seus motores eléctricos, alterando a utilização de krípton para árgon.
A plataforma ASDS Of Course I Still Love You Um Autonomous Spaceport Drone Ship (ASDS) é um veículo oceânico derivado de uma barcaça de convés, equipado com motores de manutenção de atitude e uma grande plataforma de aterragem, sendo posicionado de forma autónoma quando está na localização precisa para uma aterragem de um estágio inicial (booster). A segunda plataforma ASDS, denominada “Of Course I Still Love You” (OCISLY), começou a ser construída no início de 2015, utilizando a barcaça Marmac 304 para poder suportar os lançamentos a partir da Costa Leste dos Estados Unidos, isto é, a partir da Base das Forças Espaciais de Vandenberg, Califórnia. A barcaça foi convertida como plataforma substituta para a primeira plataforma “Just Read the Instructions” e entrou em serviço operacional para o 19.º lançamento de um Falcon-9 em finais de Junho de 2015. Nesta altura, o seu porto de abrigo era o porto de Jacksonville, Flórida, mas depois – em Dezembro deesse, foi transferida para o Porto Canaveral. Embora as dimensões sejam quase idênticas às do primeiro ASDS, várias melhorias foram feitas, incluindo uma parede anti-explosão de aço erguida entre os contentores de popa e o convés de aterragem. A 8 de Abril de 2016, o primeiro estágio, que foi utilizado para o lançamento da missão logística Dragon SpaceX CRS-8, aterrou com sucesso pela primeira vez na OCISLY. Em Fevereiro de 2018, o estágio central do Falcon Heavy Test Flight explodiu perto da OCISLY, danificando dois dos quatro propulsores da plataforma. Dois propulsores foram removidos da barcaça Marmac 303 para reparar a OCISLY. A 30 de Maio de 2020, o primeiro estágio da missão Crew Dragon Demo-2 pousou na OCISLY. A OCISLY está sediada no porto de Long Beach para apoiar os lançamentos na Costa Oeste de Vandenberg. |
O foguetão Falcon-9
Baptizado em nome da nave Millenium Falcon da saga cinematográfica “Guerra das Estrelas”, o foguetão Falcon-9 v1.1 foi um lançador a dois estágios projectado e fabricado pela SpaceX para o transporte seguro e fiável de satélites e do veículo Dragon para a órbita terrestre. Sendo o primeiro foguetão completamente desenvolvido no Século XXI, este lançador foi projectado desde o início para ter a máxima fiabilidade. A sua simples configuração de dois estágios minimiza o número de eventos de separação (staging) e com nove motores no primeiro estágio, pode completar a sua missão em segurança mesmo na possibilidade de perda de um motor.
O Falcon-9 fez história em 2012 quando colocou a cápsula Dragon na órbita correcta para uma manobra de encontro com a estação espacial internacional, fazendo da SpaceX a primeira companhia comercial a visitar a ISS. Desde então, a SpaceX realizou múltiplas missões para a ISS transportando e recolhendo carga para a NASA. O Falcon-9, bem como a cápsula Dragon, foram desenhados na base do desenvolvimento de um sistema de transporte de astronautas para o espaço e num acordo com a NASA, a SpaceX está activamente a trabalhar para atingir esse objectivo.
O foguetão Falcon-9 Upgrade, ou Falcon-9 FT, (a seguir designado simplesmente como ‘Falcon-9’) representa a mais recente evolução deste lançador. De forma geral o Falcon-9 tem 68,4 metros de comprimento, 3,7 metros de diâmetro e uma massa de 541.300 kg. O veículo é capaz de colocar uma carga de 13.150 kg numa órbita terrestre baixa ou 4.850 kg numa órbita de transferência geossíncrona.
O primeiro estágio do Falcon-9 está equipado com nove motores Merlin (Merlin-1D) e tanque de liga de alumínio e lítio que contêm oxigénio líquido e querosene RP-1. Após a ignição, um sistema de segurança fixa o veículo na plataforma de lançamento e garante que todos os motores são verificados como estando na força máxima antes de libertar o foguetão para o seu voo. Então, com uma força superior a cinco aviões Boeing 747 em potência máxima, os motores Merlin lançam o foguetão para o espaço. Ao contrário dos aviões, a força de um foguetão vai aumentando com a altitude – o Falcon-9 gera 6.806 kN ao nível do mar mas atinge 7.426 kN no vácuo espacial. Os motores do primeiro estágio vão sendo aumentados em potência perto do final da queima do estágio para assim limitar a aceleração do veículo à medida que a massa do lançador diminui com a queima do combustível. O tempo total de queima do primeiro estágio é de 162 segundos.
O primeiro estágio B1071 Para esta missão a SpaceX utilizou o foguetão Falcon-9 (B1071.14), com o primeiro estágio B1071 a realizar a sua 14.ª missão. De salientar que o B1071 foi sempre operado a partir do Complexo de Lançamento SLC-4E da Base das Forças Espaciais de Vandenberg, Califórnia. Este primeiro estágio foi utilizado pela primeira vez a 2 de Fevereiro de 2022 quando às 2027:26UTC foi lançado para colocar em órbita a missão NROL-87. Na sua primeira missão o B1071 foi recuperado na zona de aterragem LZ-4 na Base de Vandenberg. A sua segunda missão decorreu a 17 de Abril quando às 1313:12UTC foi lançado para colocar em órbita a missão NROL-85, sendo recuperado na zona de aterragem LZ-4. A terceira missão do estágio B1071 teve lugar às 1419:52UTC do dia 18 de Junho para colocar em órbita o satélite SARah-1, sendo recuperado na zona de aterragem LZ-4. A quarta missão do estágio B1071 ocorreu a partir da Califórnia, sendo utilizado a 22 de Julho para colocar em órbita 46 satélites Starlink na missão Starlink G3-2 e sendo recuperado na plataforma flutuante Of Course I Still Love You (OCISLY), no Oceano Pacífico. A quinta missão deste estágio ocorreu a 5 de Outubro para colocar em órbita 52 satélites Starlink na missão Starlink G4-29. Neste missão foi lançado às 2310:30UTC e seria recuperado na plataforma flutuante OCISLY. A 16 de Dezembro, o estágio B1071 era utilizado para colocar em órbita o satélite SWOT com o lançamento a ter lugar às 1146:47UTC, sendo recuperado na plataforma flutuante OCISLY. A 7.ª missão do estágio B1071 ocorreu a 31 de Janeiro de 2023. Nesta missão, foi lançado às 1615:00UTC para colocar em órbita 49 satélites Starlink na missão Starlink G2-6, bem como o veículo de transferência orbital ION SCV009 Eclectic Elena. O B1071 seria recuperado na plataforma flutuante OCISLY. A 17 de Março, era utilizado para colocar em órbita 52 satélites Starlink na missão Starlink G2-8 com o lançamento a ter lugar às 1926:40UTC, sendo recuperado na plataforma flutuante OCISLY. A 9.ª missão ocorreu a 12 de Junho, às 2135:00,178UTC. Nesta altura, colocou em órbita dezenas de satélites na missão Transporter-8, sendo recuperado na Zona de Aterragem LZ-4. A 10.ª missão ocorreu a 20 de Julho, às 0409:30UTC, sendo utilizago para colocar em órbita 15 satélites Starlink V2.0 Mini na missão Starlink G6-15, sendo recuperado na plataforma flutuante OCISLY. A missão Starlink G7-2 com 21 satélites Starlink v2.0 Mini seria a 11.ª missão do estágio B1071, lançada a 12 de Setembro pelas 0657:50UTC e sendo recuperado na plataforma flutuante OCISLY. A 12.ª missão ocorreu a 11 de Novembro, às 1849:00,118UTC. Nesta altura, colocou em órbita dezenas de satélites na missão Transporter-9, sendo recuperado na Zona de Aterragem LZ-4. A 13.ª missão ocorreu às 0803:40UTC do dia 8 de Dezembro, sendo utilizago para colocar em órbita 22 satélites Starlink V2.0 Mini na missão Starlink G7-8, sendo recuperado na plataforma flutuante OCISLY. |
Com os seus nove motores agrupados juntos na configuração ‘octaweb’, o Falcon-9 pode aguentar a falha de até dois motores durante o lançamento e mesmo assim conseguir atingir a órbita terrestre com sucesso. O Falcon-9 é o único lançador na sua classe com esta característica chave.
O motor Merlin foi desenvolvido internamente pela SpaceX, mas vai encontrar as suas raízes aos motores das missões Apollo, nomeadamente o sistema de injecção baseado no motor do módulo lunar. O propelente é alimentado por uma única conduta, com uma turbo-bomba de dupla pá que opera num ciclo de gerador a gás. A turbo-bomba também fornece o querosene a alta pressão para os actuadores hidráulicos, que depois recicla para a entrada a baixa pressão. Isto elimina a necessidade de um sistema hidráulico separado e significa que não é possível ocorrer uma falha no controlo de vector de força por falta de fluido hidráulico. Uma terceira utilização da turbo-bomba é o fornecimento de controlo de rotação ao actuar no escape da turbina de exaustão (no segundo estágio). Combinando-se estas características num só dispositivo aumenta-se assim de forma significativa o nível de fiabilidade do sistema.
O motor é capaz de desenvolver uma força de 654 kN ao nível do mar, 716 kN no vácuo, com um impulso específico de 282 segundos (nível do mar) e 311 segundos (vácuo).
A secção interestágio é uma estrutura compósita que liga o primeiro e o segundo estágio e alberga os sistemas de libertação e separação. O Falcon-9 utiliza um sistema de separação totalmente pneumático para uma separação de baixo impacto e altamente fiável que pode ser testado no solo, ao contrário dos sistemas pirotécnicos utilizados na maior parte dos lançadores.
O segundo estágio é propulsionado por um único motor Merlin de vácuo e coloca a carga a transportar na órbita desejada. O motor do segundo estágio entra em ignição poucos segundos após a separação entre o segundo e o primeiro estágio, e pode ser reiniciado várias vezes para colocar múltiplas cargas em diferentes órbitas. Para máxima fiabilidade, o segundo estágio está equipado com sistemas de ignição redundantes. Tal como o primeiro estágio, o segundo estágio é feito a partir de uma liga de alumínio e lítio.
O motor Merlin de vácuo (Merlin-1D de vácuo) desenvolve uma força de 934 kN e o seu tempo de queima é de 397 segundos.
A carenagem compósita é utilizada para proteger a carga durante a passagem do Falcon-9 pelas camadas mais densas da atmosfera. Quando a missão do Falcon-9 é o lançamento do veículo de carga Dragon, a carenagem não é utilizada, pois a cápsula possui o seu próprio sistema de protecção.
A carenagem tem 13,1 metros de comprimento e 5,2 metros de diâmetro. Fabricada em fibra de carbono, separa-se em duas metades utilizando um sistema de separação de actuadores pneumáticos semelhantes aos que são utilizados para a separação entre o primeiro e o segundo estágio.
A sequência de lançamento para o Falcon-9 é um processo de precisão ditada pela janela de lançamento tendo em conta a posição orbital a ser ocupada pela carga a bordo. Se a janela de lançamento é perdida, a missão é então adiada para a próxima janela de lançamento disponível.
Cerca de quatro horas antes do lançamento, inicia-se o processo de abastecimento – primeiro oxigénio líquido seguindo-se o querosene altamente refinado (RP-1). O vapor que se observa a sair do lançador durante a contagem decrescente é na realidade oxigénio a ser liberto dos tanques, sendo esta a razão pela qual o abastecimento de oxigénio líquido se mantém até quase ao final da contagem decrescente.
Lançamento | Veículo | 1.º estágio | Local Lançamento | Data Hora (UTC) | Carga | Recuperação |
2024-005 | 288 | B1067.16 | CCSFS, SLC-40 | 07/Jan/24 22:35:40 | Starlink G6-35 | ASOG |
2024-011 | 289 | B1061.18 | VSFB, SLC-4E | 14/Jan/24 08:59:30 | Starlink G7-10 | OCISLY |
2024-012 | 290 | B1073.12 | CCSFS, SLC-40 | 15/Jan/24 01:52:00 | Starlink G6-37 | ASOG |
2024-014 | 291 | B1080.5 | KSC, LC-39A | 18/Jan/24 21:49:11 | Axiom-3 | LZ-1 |
2024-017 | 292 | B1063.16 | VSFB, SLC-4E | 24/Jan/24 00:35:00 | Starlink G7-11 | OCISLY |
2024-019 | 293 | B1062.18 | KSC, LC-39A | 28/Jan/24 01:10:00 | Starlink G6-38 | ASOG |
2024-020 | 294 | B1075.9 | VSFB, SLC-4E | 29/Jan/24 05:57:20 | Starlink G7-12 | OCISLY |
2024-021 | 295 | B1077.10 | CCSFS, SLC-40 | 30/Jan/24 17:07 | Cygnus NG-20 | LZ-1 |
2024-025 | 296 | B1081.4 | CCSFS, SLC-40 | 08/Fev/24 06:33:32 | PACE | LZ-1 |
2024-027 | 297 | B1071.14 | VSFB, SLC-4E | 10/Fev/24 00:34:00 | Starlink G7-13 | OCISLY |
Dados estatísticos e próximos lançamentos
– Lançamento orbital: 6599
– Lançamento orbital EUA: 1986 (30,09%)
– Lançamento orbital Vandenberg SFB: 759 (11,50% – 38,22%)
Lançamentos orbitais em 2024
Estatísticas dos lançamentos orbitais em 2024
Próximos lançamentos orbitais
Data Hora (UTC) | Lançador |
Local Lançamento Plt. Lançamento (Recuperação) |
Carga / Missão | |
6600 |
13 Fevereiro 23:56:?? |
Falcon-9 298 |
Vandenberg SFB SLC-4E (OCISLY) |
Starlink G7-14 (x22) |
6601 |
14 Fevereiro 05:57:?? |
Falcon-9 299 |
CE Kennedy LC-39A (LZ-1) |
Odysseus |
6602 |
15 Fevereiro 00:22:?? |
H-3-22S TF-2 |
Tanegashima Yoshinubo, LP2 |
VEP-4 CE-SAT 1E TIRSAT |
6603 |
15 Fevereiro 00:51:?? |
Falcon-9 |
Cabo Canaveral SFS SLC-40 (LZ-1) |
USSF-124/HBTSS-1 |
6604 |
15 Fevereiro 03:25:?? |
14A14-1A Soyuz-2.1a |
Baikonur LC31 PU-6 |
Progress MS-26 |