A SpaceX levou a cabo com sucesso o lançamento de mais 60 satélites da constelação Starlink, assinalando também um marco importante na reutilização de um primeiro estágio de um lançador Falcon-9 ao reutilizá-lo pela 10.ª vez.
O lançamento da missão Starlink-F28 teve lugar às 0642:45UTC do dia 9 de Maio de 2021 a partir do Complexo de Lançamento SLC-40 do Cabo Canaveral SFS, Florida.
O lançamento foi levado a cabo pelo foguetão Falcon 9-117 (B1051.10) cujo primeiro estágio foi recuperado na plataforma flutuante Just Read The Instructions (JRTI) no Oceano Atlântico, situada a 632 km a Noroeste do Cabo Canaveral.
Para esta missão a SpaceX utilizou um foguetão Falcon-9 cujo primeiro estágio era designado ‘B1051.10’, isto é, o seu primeiro estágio B1051 na sua 10ª missão.
Este primeiro estagio estágio foi utilizado pela primeira vez a 2 de Março de 2019, quando às 0745:03UTC foi lançado a partir do Complexo de Lançamento 39A do Centro Espacial Kennedy (LC39A) para a missão de demonstração da capsula Crew Dragon C204 (Demo-1). Na sua primeira missão o B1051 foi recuperado na plataforma flutuante Of Course I Still Love You (OCISLY). A sua segunda missão teria lugar dia 12 de Junho de 2019 quando às 1417UTC foi lançado a partir do Complexo de Lançamento Espacial SLC-4E da Base Aérea de Vandenberg, Califórnia para por em órbita 3 satélites para a Radarsat Constellation. Na sua segunda missão este estágio veio a aterrar na zona de aterragem 4 (LZ4) na Base Aerea de Vandenberg. Na terceira missão a 29 de Janeiro de 2020 foi lançado às 14:06:49,493UTC a partir Complexo de Lançamento SLC-40 do Cabo Canaveral SFS para colocar em órbita um conjunto de 60 satélites (v1.0 L3) vindo a ser recuperado na plataforma flutuante OCISLY. Já na quarta missão a 22 de Abril de 2020 às 1930:30UTC foi lançado a partir do Complexo de Lançamento 39A do Centro Espacial Kennedy (LC39A) para colocar em órbita um conjunto de satélites Starlink (v1.0 L6) vindo a ser recuperado na plataforma flutuante OCISLY.
Na quinta missão, a 7 de Agosto de 2020, foi lançado às 0512:05UTC a partir do Complexo de Lançamento 39A do Centro Espacial Kennedy (LC39A) para colocar em orbita 57 satélites da constelação Starlink (v1.0 L9) vindo a ser recuperado na plataforma flutuante OCISLY. A sua sexta missão, a 18 de Outubro de 2020, foi lançado às 1225:57,439UTC a partir Complexo de Lançamento 39A do Centro Espacial Kennedy (LC39A) para colocar em órbita 60 satélites da constelação Starlink (v1.0 L13) sendo recuperado recuperado na plataforma flutuante OCISLY. Na sétima missão a 13 de Dezembro de 2020 foi lançado às 1730:00UTC a partir do Complexo de Lançamento SLC-40 do Cabo Canaveral SFS para colocar em órbita o satélite SiriusXM vindo a ser recuperado na plataforma flutuante Just Read The instructions (JRTI). Na oitava missão a 20 de Janeiro de 2021 pelas 13:02 UTC foi lançado a partir Complexo de Lançamento 39A do Centro Espacial Kennedy (LC39A) para colocar em órbita um novo conjunto de satélites Starlink (v1.0 L16) sendo recuperado na plataforma flutuante Just Read The instructions (JRTI). Na nona missão, a 14 de Março de 2021 foi lançado às 1001:26UTC para colocar em órbita um conjunto de de satélites Starlink (v1.0 L21) vindo a ser recuperado na plataforma flutuante OCISLY. Há excepção do lançamento a partir de Vandenberg todas as recuperações deste estágio tiveram lugar no Oceano Atlântico.
Na missão Starlink F28, a recuperação de ambas as metades das carenagens de protecção de carga foi realizada pela embarcação Sheila Bordelon, cerca de 45 minutos após o lançamento, depois de amararem. De notar que as próprias carenagens possuem um paraquedas para que a velocidade seja drásticamente reduzida fazendo com que a sua recuperação seja feita de forma mais fácil e suave.
Não foi realizado teste estático para esta missão que curiosamente surgiu antes do lançamento da missão Starlink F27 que está previsto para as 2258UTC do dia 15 de Maio.
Os satélites Starlink
A SpaceX projectou a Starlink para conectar utilizadores de Internet com baixa latência, oferecer serviços de distribuição de elevada largura de banda fornecendo uma cobertura continua em todo o mundo usando uma rede de milhares de satélites na orbita baixa da terra especialmente em lugares onde a conectividade é baixa ou inexistente como por exemplo em lugares rurais. Os Starlink também darão cobertura em locais onde os serviços existentes são instáveis ou de elevado custo.
Com um desenho de painel plano contendo múltiplas antenas de alto rendimento e um único painel solar, cada satélite Starlink pesa aproximadamente 260 kg, permitindo à SpaceX uma produção em massa e tirar todo o proveito da capacidade de lançamento do Falcon-9. Para ajustar a posição em orbita, manter a altitude pretendida e posterior remoção orbital, os satélites Starlink possuem propulsores do tipo Hall alimentados a krypton. Sendo injectados a uma altitude de 290 km usarão este mesmo sistema para elevar as suas orbitas assim que sejam concluídas as verificações.(Antes de elevar a orbita, os engenheiros da SpaceX irão realizar uma revisão de dados para garantir que todos os satélites Starlink estão a operar como pretendido).
Desenhados e construídos usando a mesma tecnologia que as Dragon, cada satélite está equipado com Startracker que permite apontar os satélites com precisão. Nesta iteração a SpaceX incrementou a capacidade de espectro para o utilizador final através de melhorias permitindo uma maximização na utilização das bandas Ka e Ku. Os satélites são também capazes de detectar lixo espacial em orbita e evitar a colisão de modo autónomo.
Os satélites Starlink estão na linha da frente na mitigação de detritos em orbita, atingindo ou excedendo todas as leis padronizadas da industria aeroespacial. No fim do ciclo de vida, os satélites irão usar a própria propulsão que têm a bordo para procederem à remoção orbital no decurso de uns poucos meses. No improvável evento da propulsão falhar, estes satélites irão queimar na atmosfera terrestre no período compreendido entre 1 a 5 anos, tempo significativamente inferior que as centenas ou milhares de anos necessários para grandes altitudes. De notar que todos os componentes estão projectados para uma total desintegração.
A Starlink irá oferecer um serviço de Internet em zonas do Estados Unidos da América e no Canadá ao fim de seis lançamentos, rapidamente expandindo para uma cobertura global nas zonas populacionais após vinte e quatro lançamentos.
Estando ainda na fase inicial de injecção orbital os painéis solares encontram-se numa posição de baixo atrito e o conjunto dos próprios Starlinks estando ainda muito próximos uns dos outros faz com sejam muito visíveis a olho nu a partir do solo aquando da sua passagem. Uma vez que os satélites atinjam a altitude operacional de 550 km as suas orientações mudam e os satélites começam a ficar significativamente menos visíveis a partir do solo.
Durante todas as operações de voo, a SpaceX irá partilhar dados de monitorização de alta fidelidade com outras operadoras de satélites através do 18.º esquadrão do controlo espacial da Força Aérea Americana. Adicionalmente a SpaceX irá disponibilizar aos grupos de astronomia com informação de previsão do tipo TLE’s (two-line elements) antes de qualquer lançamento de forma a que os astrónomos possam coordenar as observações com a passagem dos satélites
Lançamento | Veículo | 1.º estágio | Local Lançamento | Data Hora (UTC) | Carga |
2021-006 | 106 | B1058.5 | CCSFS SLC-40 | 24/Jan/21 15:00:?? | Starlink v0.9 R1-1 a Starlink v0.9 R1-10 |
2021-009 | 107 | B1060.5 | CCSFS SLC-40 | 04/Fev/21 06:19:?? | Starlink v1.0-L18 (60) |
2021-017 | 109 | B1049.8 | KSC LC-39A | 05/Fev/21 08:24:54 | Starlink v1.0-L19 (60) |
2021-018 | 110 | B1058.6 | CCSFS SLC-40 | 11/Mar/21 08:13:29 | Starlink v1.0-L20 (60) |
2021-021 | 111 | B1051.9 | KSC LC-39A | 14/Mar/21 10:01:26 | Starlink v1.0-L21 (60) |
2021-024 | 112 | B1060.6 | CCSFS, SLC-40 | 24/Mar/21 08:28:24 | Starlink v1.0-L22 (60) |
2021-027 | 113 | B1058.7 | CCSFS, SLC-40 | 07/Abr/21 16:34:18 | Starlink v1.0-L23 (60) |
2021-036 | 115 | B1060.7 | CCSFS, SLC-40 | 29/Abr/21 03:44:30 | Starlink v1.0-L24 (60) |
2021-038 | 116 | B1049.9 | KSC LC-39A | 04/Mai/21 19:01 | Starlink v1.0-L25 (60) |
2021-040 | 117 | B1051.10 | CCSFS, SLC-40 | 09/Mai/21 06:42:45 | Starlink v1.0-L27 (60) |
Texto: Rui C. Barbosa / Salomé T. Fagundes
Tabela: Rui C. Barbosa
Lançamento
O foguetão Falcon-9 é activado a T-10h 00m. Tanto o lançador como a sua carga são submetidos a uma série de verificações testes antes do início do abastecimento do querosene RP-1. O Director de Voo consulta os controladores a T-38m, determinando assim se tudo está pronto para o lançamento. O processo de abastecimento inicia-se a T-35m no primeiro estágio, seguindo-se o início do abastecimento do oxigénio líquido (LOX) ao mesmo tempo e no segundo estágio a T – 16m.
A fase terminal da contagem decrescente inicia-se com os motores a serem condicionados termicamente para o lançamento a T-7m. A T-1m é enviado um comando para o computador de voo para iniciar as verificações pré-lançamento e o sistema de supressão sónica por água é activado na plataforma de lançamento. Por esta altura os tanques de propolente também são pressurizados A T-45s o Director de Lançamento da SpaceX verifica se todos os parâmetros estão prontos para o lançamento. Na mesma altura, é verificado que o espaço aéreo está pronto para o voo. A sequência de ignição é iniciada a T-3s. A T=0s o foguetão abandona a plataforma.
Abandonando a plataforma de lançamento, o Falcon-9 inicia uma série de manobras para se colocar na trajectória de voo correcta. A fase MaxQ, de máxima pressão dinâmica, é atingida a T+1m 12s. O final da queima do primeiro estágio ocorre a T+2m 33s, dando-se três segundos depois a separação entre o primeiro e o segundo estágio. O segundo estágio entra em ignição a T+2m 44s. A separação das duas metades da carenagem de protecção ocorre a T+3m 4s.
O primeiro estágio termina a sua queima de reentrada a T+6m 53s e aterra na plataforma JRTI a T+8m 35s. A SpaceX possui duas plataformas flutuantes baptizadas de Just Read the Instructions e Of Course I Still Love You (OCISLY), que são os nomes de embarcações das histórias do autor Iain M. Banks.
O final da primeira queima do segundo estágio ocorre a T+8m 47s. Segue-se uma fase não propulsionada até T+45m 33s. Esta ignição tem a duração de 2 segundos. A separação dos satélites Starlink tem lugar a T+1h 3m 51s.
O foguetão Falcon-9
Baptizado em nome da nave Millenium Falcon da saga cinematográfica “Guerra das Estrelas”, o foguetão Falcon-9 v1.1 é um lançador a dois estágios projectado e fabricado pela SpaceX para o transporte seguro e fiável de satélites e do veículo Dragon para a órbita terrestre. Sendo o primeiro foguetão completamente desenvolvido no Século XXI, este lançador foi projectado desde o início para ter a máxima fiabilidade. A sua simples configuração de dois estágios minimiza o número de eventos de separação (staging) e com nove motores no primeiro estágio, pode completar a sua missão em segurança mesmo na possibilidade de perda de um motor.
O Falcon-9 fez história em 2012 quando colocou a cápsula Dragon na órbita correcta para uma manobra de encontro com a estação espacial internacional, fazendo da SpaceX a primeira companhia comercial a visitar a ISS. Desde então, a SpaceX realizou múltiplas missões para a ISS transportando e recolhendo carga para a NASA. O Falcon-9, bem como a cápsula Dragon, foram desenhados na base do desenvolvimento de um sistema de transporte de astronautas para o espaço e num acordo com a NASA, a SpaceX está activamente a trabalhar para atingir esse objectivo.
O foguetão Falcon-9 Upgrade, ou Falcon-9 FT, (a seguir designado simplesmente como ‘Falcon-9’) representa a mais recente evolução deste lançador. De forma geral o Falcon-9 tem 68,4 metros de comprimento, 3,7 metros de diâmetro e uma massa de 541.300 kg. O veículo é capaz de colocar uma carga de 13.150 kg numa órbita terrestre baixa ou 4.850 kg numa órbita de transferência geossíncrona.
O primeiro estágio do Falcon-9 está equipado com nove motores Merlin (Merlin-1D) e tanque de liga de alumínio e lítio que contêm oxigénio líquido e querosene RP-1. Após a ignição, um sistema de segurança fixa o veículo na plataforma de lançamento e garante que todos os motores são verificados como estando na força máxima antes de libertar o foguetão para o seu voo. Então, com uma força superior a cinco aviões Boeing 747 em potência máxima, os motores Merlin lançam o foguetão para o espaço. Ao contrário dos aviões, a força de um foguetão vai aumentando com a altitude – o Falcon-9 gera 6.806 kN ao nível do mar mas atinge 7.426 kN no vácuo espacial. Os motores do primeiro estágio vão sendo aumentados em potência perto do final da queima do estágio para assim limitar a aceleração do veículo à medida que a massa do lançador vai diminuindo com a queima do combustível. O tempo total de queima do primeiro estágio é de 162 segundos.
Com os seus nove motores agrupados juntos na configuração ‘octaweb’, o Falcon-9 pode aguentar a falha de até dois motores durante o lançamento e mesmo assim conseguir atingir a órbita terrestre com sucesso. O Falcon-9 é o único lançador na sua classe com esta característica chave.
O motor Merlin foi desenvolvido internamente pela SpaceX mas vai encontrar as suas raízes aos motores das missões Apollo, nomeadamente o sistema de injecção baseado no motor do módulo lunar. O propolente é alimentado através de uma única conduta, com uma turbo-bomba de dupla pá que opera num ciclo de gerador a gás. A turbo-bomba também fornece o querosene a alta pressão para os actuadores hidráulicos, que depois recicla para a entrada a baixa pressão. Isto elimina a necessidade de um sistema hidráulico separado e significa que não é possível ocorrer uma falha no controlo de vector de força por falta de fluido hidráulico. Uma terceira utilização da turbo-bomba é o fornecimento de controlo de rotação ao actuar no escape da turbina de exaustão (no segundo estágio). Combinando-se estas características num só dispositivo aumenta-se assim de forma significativa o nível de fiabilidade do sistema.
O motor é capaz de desenvolver uma força de 654 kN ao nível do mar, 716 kN no vácuo, com um impulso específico de 282 segundos (nível do mar) e 311 segundos (vácuo).
A secção interestágio é uma estrutura compósita que liga o primeiro e o segundo estágio e alberga os sistemas de libertação e separação. O Falcon-9 utiliza um sistema de separação totalmente pneumático para uma separação de baixo impacto e altamente fiável que pode ser testado no solo, ao contrário dos sistemas pirotécnicos utilizados na maior parte dos lançadores.
O segundo estágio é propulsionado por um único motor Merlin de vácuo e coloca a carga a transportar na órbita desejada. O motor do segundo estágio entra em ignição poucos segundos após a separação entre o segundo e o primeiro estágio, e pode ser reiniciado várias vezes para colocar múltiplas cargas em diferentes órbitas. Para máxima fiabilidade, o segundo estágio está equipado com sistemas de ignição redundantes. Tal como o primeiro estágio, o segundo estágio é feito a partir de uma liga de alumínio e lítio.
O motor Merlin de vácuo (Merlin-1D de vácuo) desenvolve uma força de 934 kN e o seu tempo de queima é de 397 segundos.
A carenagem compósita é utilizada para proteger a carga durante a passagem do Falcon-9 pelas camadas mais densas da atmosfera. Quando a missão do Falcon-9 é o lançamento do veículo de carga Dragon, a carenagem não é utilizada pois a cápsula possui o seu próprio sistema de protecção.
A carenagem tem 13,1 metros de comprimento e 5,2 metros de diâmetro. Fabricada em fibra de carbono, separa-se em duas metades utilizando um sistema de separação de actuadores pneumáticos semelhantes aos que são utilizados para a separação entre o primeiro e o segundo estágio.
Lançamento | Veículo | 1.º estágio | Local Lançamento | Data Hora (UTC) | Carga | Recuperação |
2021-012 | 108 | B1059.6 | CCSFS SLC-40 | 16/Fev/21 03:59:37 | Starlink v1.0 (x60) L19 | OCISLY (Oc. Atlântico) |
2021-017 | 109 | B1049.8 | KSC LC-39A | 04/Mar/21 08:24:54 | Starlink v1.0 (x60) L17 | OCISLY (Oc. Atlântico) |
2021-018 | 110 | B1058.6 | CCSFS SLC-40 | 11/Mar/21 08:13:29 | Starlink v1.0 (x60) L20 | JRTI (Oc. Atlântico) |
2021-021 | 111 | B1051.9 | KSC LC-39A | 14/Mar/21 10:01:26 | Starlink v1.0 (x60) L21 | OCISLY (Oc. Atlântico) |
2021-024 | 112 | B1060.6 | CCSFS, SLC-40 | 14/Mar/21 08:28:24 | Starlink v1.0 (x60) L22 | OCISLY (Oc. Atlântico) |
2021-027 | 113 | B1058.7 | CCSFS, SLC-40 | 07/Abr/21 16:34:18 | Starlink v1.0 (x60) L23 | OCISLY (Oc. Atlântico) |
2021-030 | 114 | B1061.2 | KSC, LC-39A | 23/Abr/21 09:49:02,397 | Crew Dragon Endeavour (USCV-2) | OCISLY (Oc. Atlântico) |
2021-036 | 115 | B1060.7 | CCSFS, SLC-40 | 29/Abr/21 03:44:30 | Starlink v1.0 (x60) L24 | JRTI (Oc. Atlântico) |
2021-038 | 116 | B1049.9 | KSC, LC-39A | 04/Mai/21 19:01 | Starlink v1.0 (x60) L25 | OCISLY (Oc. Atlântico) |
2021-040 | 117 | B1051.10 | CCSFS, SLC-40 | 09/Mai/21 06:42:45 | Starlink v1.0 (x60) L27 | JRTI (Oc. Atlântico) |
A sequência de lançamento para o Falcon-9 é um processo de precisão ditada pela janela de lançamento tendo em conta a posição orbital a ser ocupada pela carga a bordo. Se a janela de lançamento é perdida, a missão é então adiada para a próxima janela de lançamento disponível.
Cerca de quatro horas antes do lançamento, inicia-se o processo de abastecimento – primeiro oxigénio líquido seguindo-se o querosene altamente refinado (RP-1). O vapor que se observa a sair do lançador durante a contagem decrescente é na realidade oxigénio a ser libertado dos tanques, sendo esta a razão pela qual o abastecimento de oxigénio líquido se mantém até quase ao final da contagem decrescente.
Dados estatísticos e próximos lançamentos
– Lançamento orbital: 6062
– Lançamento orbital EUA: 1740 (28,70%)
– Lançamento orbital desde Cabo Canaveral: 795 (13,11% – 45,69%)
Os próximos lançamentos orbitais previstos são (hora UTC):
6063 – 15 Mai (1000:??) – Electron (F20 “Running Out of Toes”) – Onenui (Máhia), LC-1A – BlackSky (x2)
6064 – 15 Mai (2258:??) – Falcon 9-118 (B1058.8) – Cabo Canaveral AFS, SLC-40 – Starlink F27 (x60) [v1.0 L26]
6065 – 17 Mai (1735:??) – Atlas-V/421 – Cabo Canaveral SFS, SLC-41 – SBIRS-GEO 5
6065 – 18 Mai (????:??) – Chang Zheng-4B – Jiuquan, LC43/94 – Haiyang-2D
6066 – 20 Mai (????:??) – Chang Zheng-7 (Y3 – Wenchang, LC201 – Tianzhou-2
6067 – 27 Mai (????:??) – 14A14-1B Soyuz-2-1B/Fregat (V15000-007/123-0x (ST32)) – Vostochniy, LC-1S – OneWeb (x34)