O satélite de comunicações Nilesat-301 que será operado pela empresa egípcia Nilesat, foi colocado em órbita pela Space Exploration Technologies Corp. (SpaceX). O lançamento teve lugar às 2103UTC do dia 8 de Junho de 2022 a partir do Complexo de Lançamento SLC-40 do Cabo Canaveral SFS. O lançamento foi realizado pelo foguetão Falcon 9-157 (B1062.7) cujo primeiro estágio foi recuperado na plataforma flutuante Just Read The Instructions no Oceano Atlântico.
A separação do satélite Nilesat-301 ocorreu às 2137UTC.
O Nilesat-301 foi desenvlvido e construído pela empresa Thales Alenia Space, tendo o contrato sido atribuído em Dezembro de 2019. Com uma massa de 3.938 kg, o satélite é baseado na plataforma Spacebus-4000B2 e irá coupar uma posição na órbita geossíncrona a 7.º longitude Oeste. A sua carga de comunicações é composta por 32 repetidores de banda Ku e 6 repetidores de banda Ka para serviços de televisão, rádio e transmissão de dados DTH (Direct-To-Home) para o Médio Oriente e Norte de África. O satélite deverá operar durante 15 anos.
Lançamento
A cerca de dez horas do lançamento procede-se à activação eléctrica do foguetão Falcon-9. Tanto o lançador como a sua carga são submetidos a uma série de verificações testes antes do início do abastecimento do querosene RP-1. O Director de Voo consulta os controladores a T-38m, determinando assim se tudo está pronto para o início do abastecimento do lançador. O processo de abastecimento de RP-1 inicia-se a T-35m no primeiro estágio, seguindo-se o início do abastecimento do oxigénio líquido (LOX) na mesma altura. O abastecimento de LOX ao segundo estágio inicia-se a T-16m.
A fase terminal da contagem decrescente inicia-se com os motores a serem condicionados termicamente para o lançamento a T-7m. A T-1m é enviado um comando para o computador de voo para iniciar as verificações pré-lançamento e o sistema de supressão sónica é activado na plataforma de lançamento que é inundada por milhões de litros de água. Por esta altura os tanques de propelente também são pressurizados. A T-45s o Director de Lançamento da SpaceX verifica se todos os parâmetros estão prontos para a missão, sendo também verificado que o espaço aéreo está pronto para o lançamento. A sequência de ignição é iniciada a T-3s. A T=0s o foguetão abandona a plataforma.
Abandonando a plataforma de lançamento, o Falcon-9 inicia uma série de manobras para se colocar na trajectória de voo correcta. A fase MaxQ, de máxima pressão dinâmica, é atingida a T+1m 12s. É nesta altura que o lançador atinge o ponto mais elevado de ‘stress’ mecânico na sua estrutura.
O final da queima do primeiro estágio (MECO – Main Engine Cut-Off) ocorre a T+2m 34s, dando-se três segundos depois a separação entre o primeiro e o segundo estágio, com este a entrar em ignição a T+2m 45s. A ejecção das duas metades da carenagem de protecção ocorre a T+3m 24s. A queima de reentrada do primeiro estágio ocorre entre T+6m 28s e T+6m 50s, enquanto a queima de aterragem ocorre entre T+8m 19s e T+8m 42s, aterrando na plataforma flutuante Just Read The Instructions. O final da primeira queima do segundo estágio ocorre a T+8m 5s.
A T+26m 56s inicia-se a segunda queima do segundo estágio que termina a T+28m 2s. A separação do satélite Nilesat-301 ocorre a T+33m 13s.
O foguetão Falcon-9
Baptizado em nome da nave Millenium Falcon da saga cinematográfica “Guerra das Estrelas”, o foguetão Falcon-9 v1.1 é um lançador a dois estágios projectado e fabricado pela SpaceX para o transporte seguro e fiável de satélites e do veículo Dragon para a órbita terrestre. Sendo o primeiro foguetão completamente desenvolvido no Século XXI, este lançador foi projectado desde o início para ter a máxima fiabilidade. A sua simples configuração de dois estágios minimiza o número de eventos de separação (staging) e com nove motores no primeiro estágio, pode completar a sua missão em segurança mesmo na possibilidade de perda de um motor.
O Falcon-9 fez história em 2012 quando colocou a cápsula Dragon na órbita correcta para uma manobra de encontro com a estação espacial internacional, fazendo da SpaceX a primeira companhia comercial a visitar a ISS. Desde então, a SpaceX realizou múltiplas missões para a ISS transportando e recolhendo carga para a NASA. O Falcon-9, bem como a cápsula Dragon, foram desenhados na base do desenvolvimento de um sistema de transporte de astronautas para o espaço e num acordo com a NASA, a SpaceX está activamente a trabalhar para atingir esse objectivo.
O foguetão Falcon-9 Upgrade, ou Falcon-9 FT, (a seguir designado simplesmente como ‘Falcon-9’) representa a mais recente evolução deste lançador. De forma geral o Falcon-9 tem 68,4 metros de comprimento, 3,7 metros de diâmetro e uma massa de 541.300 kg. O veículo é capaz de colocar uma carga de 13.150 kg numa órbita terrestre baixa ou 4.850 kg numa órbita de transferência geossíncrona.
O primeiro estágio do Falcon-9 está equipado com nove motores Merlin (Merlin-1D) e tanque de liga de alumínio e lítio que contêm oxigénio líquido e querosene RP-1. Após a ignição, um sistema de segurança fixa o veículo na plataforma de lançamento e garante que todos os motores são verificados como estando na força máxima antes de libertar o foguetão para o seu voo. Então, com uma força superior a cinco aviões Boeing 747 em potência máxima, os motores Merlin lançam o foguetão para o espaço. Ao contrário dos aviões, a força de um foguetão vai aumentando com a altitude – o Falcon-9 gera 6.806 kN ao nível do mar mas atinge 7.426 kN no vácuo espacial. Os motores do primeiro estágio vão sendo aumentados em potência perto do final da queima do estágio para assim limitar a aceleração do veículo à medida que a massa do lançador vai diminuindo com a queima do combustível. O tempo total de queima do primeiro estágio é de 162 segundos.
O primeiro estágio B1062 Para esta missão a SpaceX utilizou o foguetão Falcon-9 (B1062.7), com o primeiro estágio B1062 a realizar a sua 7.ª missão. Este primeiro estágio foi utilizado pela primeira vez a 5 de Novembro de 2020 quando às a 2324:23UTC foi lançado a partir do Complexo de Lançamento SLC-40 do Cabo Canaveral AFS, Florida para colocar em órbita o satélite de navegação USA-304 (GPS-III SV04 “Sacagawea”). Na sua primeira missão o B1062 foi recuperado na plataforma flutuante Of Course I Still Love You (OCISLY) estacionada no Oceano Atlântico. O lançamento do dsatélite de navegação GPS III SV05 ‘Neil Armstrong’, às 1609:35UTC do dia 17 de Junho de 2021, marcou a segunda missão do estágio B1062, sendo recuperado no Oceano Atlântico na plataforma flutuante Just Read The Instructions (JRTI). A terceira missão do estágio B1062 teve início às 0002:56UTC do dia 16 de Setembro, colocabdo em órbira a missão tripulada privada Inspiration4 a partir do Complexo de Lançamento LC-39A do Centro Espacial Kennedy. Nesta missão o estágio seria Oceano Atlântico na plataforma flutuante JRTI. A quarta missão deste estágio decorreu a 6 de Janeiro de 2022, sendo utilizado para colocar em órbita 49 satélites Starlink na missão Starlink G4-5 lançada às 2149:10UTC a partir do Complexo de Lançamento LC-39A do Centro Espacial Kennedy. Nesta missão o estágio seria Oceano Atlântico na plataforma flutuante A Shortfal of Gravitas (ASOG). Vinte e um dias antes do seu sexto lançamento, o estágio B1062 foi utilizado para colocar em órbita a missão Axiom-1 às 1517:12UTC do dia 8 de Abril, sendo lançado desde o Complexo de Lançamento LC-39A do Centro Espacial Kennedy e recuperado na plataforma flutuante ASOG. A 6.ª missão do estágio B1062 ocorreu às 2127:10UTC do dia 29 de Abril a partir do Complexo de Lançamento SLC-40 do Cabo Canaveral para colocar em órbita 53 satélites Starlink na missão Starlink G4-16, tendo sido recuperado na plataforma flutuante JRTI. |
Com os seus nove motores agrupados juntos na configuração ‘octaweb’, o Falcon-9 pode aguentar a falha de até dois motores durante o lançamento e mesmo assim conseguir atingir a órbita terrestre com sucesso. O Falcon-9 é o único lançador na sua classe com esta característica chave.
O motor Merlin foi desenvolvido internamente pela SpaceX mas vai encontrar as suas raízes aos motores das missões Apollo, nomeadamente o sistema de injecção baseado no motor do módulo lunar. O propolente é alimentado através de uma única conduta, com uma turbo-bomba de dupla pá que opera num ciclo de gerador a gás. A turbo-bomba também fornece o querosene a alta pressão para os actuadores hidráulicos, que depois recicla para a entrada a baixa pressão. Isto elimina a necessidade de um sistema hidráulico separado e significa que não é possível ocorrer uma falha no controlo de vector de força por falta de fluido hidráulico. Uma terceira utilização da turbo-bomba é o fornecimento de controlo de rotação ao actuar no escape da turbina de exaustão (no segundo estágio). Combinando-se estas características num só dispositivo aumenta-se assim de forma significativa o nível de fiabilidade do sistema.
O motor é capaz de desenvolver uma força de 654 kN ao nível do mar, 716 kN no vácuo, com um impulso específico de 282 segundos (nível do mar) e 311 segundos (vácuo).
A secção interestágio é uma estrutura compósita que liga o primeiro e o segundo estágio e alberga os sistemas de libertação e separação. O Falcon-9 utiliza um sistema de separação totalmente pneumático para uma separação de baixo impacto e altamente fiável que pode ser testado no solo, ao contrário dos sistemas pirotécnicos utilizados na maior parte dos lançadores.
O segundo estágio é propulsionado por um único motor Merlin de vácuo e coloca a carga a transportar na órbita desejada. O motor do segundo estágio entra em ignição poucos segundos após a separação entre o segundo e o primeiro estágio, e pode ser reiniciado várias vezes para colocar múltiplas cargas em diferentes órbitas. Para máxima fiabilidade, o segundo estágio está equipado com sistemas de ignição redundantes. Tal como o primeiro estágio, o segundo estágio é feito a partir de uma liga de alumínio e lítio.
O motor Merlin de vácuo (Merlin-1D de vácuo) desenvolve uma força de 934 kN e o seu tempo de queima é de 397 segundos.
A carenagem compósita é utilizada para proteger a carga durante a passagem do Falcon-9 pelas camadas mais densas da atmosfera. Quando a missão do Falcon-9 é o lançamento do veículo de carga Dragon, a carenagem não é utilizada pois a cápsula possui o seu próprio sistema de protecção.
A carenagem tem 13,1 metros de comprimento e 5,2 metros de diâmetro. Fabricada em fibra de carbono, separa-se em duas metades utilizando um sistema de separação de actuadores pneumáticos semelhantes aos que são utilizados para a separação entre o primeiro e o segundo estágio.
A sequência de lançamento para o Falcon-9 é um processo de precisão ditada pela janela de lançamento tendo em conta a posição orbital a ser ocupada pela carga a bordo. Se a janela de lançamento é perdida, a missão é então adiada para a próxima janela de lançamento disponível.
Cerca de quatro horas antes do lançamento, inicia-se o processo de abastecimento – primeiro oxigénio líquido seguindo-se o querosene altamente refinado (RP-1). O vapor que se observa a sair do lançador durante a contagem decrescente é na realidade oxigénio a ser libertado dos tanques, sendo esta a razão pela qual o abastecimento de oxigénio líquido se mantém até quase ao final da contagem decrescente.
Lançamento | Veículo | 1.º estágio | Local Lançamento | Data Hora (UTC) | Carga | Recuperação |
2022-040 | 148 | B1071.2 | VSFB, SLC-4E | 17/Abr/22 13:13:12 | NROL-85 | LZ-4 |
2022-041 | 149 | B1060.12 | CCSFS, SLC-40 | 21/Abr/22 17:51:40 | Starlink 4-14 | JRTI (Oc. Atlântico) |
2022-042 | 150 | B1067.4 | KSC, LC-39A | 27/Abr/22 07:52:55 | Crew Dragon Freedom | ASOG (Oc. Atlântico) |
2022-044 | 151 | B1062.6 | CCSFS, SLC-40 | 29/Abr/22 21:27:10 | Starlink 4-16 | JRTI (Oc. Atlântico) |
2022-049 | 152 | B1058.12 | KSC, LC-39A | 06/Mai/22 09:46:00 | Starlink 4-17 | ASOG (Oc. Atlântico) |
2022-051 | 153 | B1063.5 | VSFB, SLC-4E | 13/Mai/22 22:07:50 | Starlink 4-13 | OCISLY (Oc. Pacífico) |
2022-052 | 154 | B1073.1 | CCSFS, SLC-40 | 14/Mai/22 20:40:50 | Starlink 4-15 | JRTI (Oc. Atlântico) |
2022-053 | 155 | B1052.5 | KSC, LC-39A | 18/Mai/22 10:59:40 | Starlink 4-18 | ASOG (Oc. Atlântico) |
2022-057 | 156 | B1061.8 | CCSFS, SLC-40 | 25/Mai/22 18:35:00 | Transporter-5 | JRTI (Oc. Atlântico) |
2022-061 | 157 | B1062.7 | CCSFS, SLC-40 | 08/Jun/22 21:04 | Nilesat-301 | JRTI (Oc. Atlântico) |
Dados estatísticos e próximos lançamentos
– Lançamento orbital: 6228
– Lançamento orbital EUA: 1805 (28,98%)
– Lançamento orbital desde Cabo Canaveral SFS: 820 (13,17 – 45,43%)
Os próximos lançamentos orbitais previstos são (hora UTC):
6229 – 12 Jun (????:??) – Cabo Canaveral SFS, SLC-46 – Rocket-3.3 (LV0010) – TROPICS-1, TROPICS-2
6230 – 13 Jun (0903:??) – Onenui (Máhia), LC-1A – Electron/Photon (F27 ‘CAPSTONE’) – CAPSTONE, Lunar Photon
6213 – 15 Jun (0900:??) – Naro, LC-2 – Nuri – NEXTSat-2, ??
6214 – 17 Jun (????:??) – Jiuquan, LC45/95B – Gushenxing-1 (Y3 ‘White is the new black’) – Taijing-1 01, Taijing-1 02 ‘Xingshidai-12’
6215 – 18 Jun (????:??) – Vandenberg SFB, SLC-4E/LZ-4 – Falcon-9 (B1071.3) – SARah-1, XVI LEO, Sherpa-NG