Missão militar NROL-105 lançada desde Vandenberg

O National Reconnaissance Office (NRO), em parceria com a U.S. Space Force Space Launch Delta 30 e a Space Exploration Technologies Corp. (SpaceX), lançou com sucesso a missão NROL-105 a bordo de um foguetão Falcon-9 no dia 17 de Janeiro de 2026, continuando a sua doutrina norte-americana de aprofundamento da militarização da órbita terrestre. Esta missão colocou em órbita novos satélites Starshield – a versão militar dos satélites Starlink.

O lançamento da missão teve lugar às 0439:51UTC e foi realizado pelo foguetão Falcon 9-590 (B1100.2) a partir do Complexo de Lançamento SLC-4E da Base das Forças Espaciais de Vandenberg, Califórnia. O primeiro estágio foi recuperado após aterrar na Zona de Aterragem LZ-4, em Vandenberg.

Os satélites a bordo fazem parte da denominada “Proliferated Architecture” do NRO, que será uma constelação de satélites de inteligência, incluindo satélites de observação óptica, satélites de retransmissão, satélites de aviso antecipado, etc. Os satélites são construídos tendo por base o modelo Starshield da empresa do oligarca Elon Musk, com a Northrop Grumman a fornecer sensores para alguns dos veículos.

Esta missão foi o décimo segundo lançamento geral da arquitetura proliferada do NRO e o primeiro de aproximadamente uma dúzia de lançamentos do NRO programados ao longo de 2026, consistindo em missões proliferadas e de segurança nacional. Segundo comunicado do NRO, “ter centenas de satélites em órbita é fundamental para apoiar a nossa nação e os seus parceiros. Esta constelação crescente melhora a resiliência e a capacidade da missão através de tempos de revisita reduzidos, cobertura persistente melhorada e processamento e entrega acelerados de dados críticos.”

Possivelmente, nesta missão terão sido colocado em órbita apenas dois satélites que receberam a designação USA-572 e USA-573.

Lançamento

A cerca de dez horas do lançamento procede-se à activação eléctrica do foguetão Falcon-9. Tanto o lançador como a sua carga são submetidos a uma série de verificações testes antes do início do abastecimento do querosene RP-1. O Director de Voo consulta os controladores a T-38m, determinando assim se tudo está pronto para o início do abastecimento do lançador. O processo de abastecimento de RP-1 inicia-se a T-35m no primeiro estágio, seguindo-se o início do abastecimento do oxigénio líquido (LOX) na mesma altura. O abastecimento de LOX ao segundo estágio inicia-se a T-16m.

A fase terminal da contagem decrescente inicia-se com os motores a serem condicionados termicamente para o lançamento a T-7m. A T-1m é enviado um comando para o computador de voo para iniciar as verificações pré-lançamento e o sistema de supressão sónica é activado na plataforma de lançamento inundada por milhões de litros de água. Por esta altura os tanques de propelente também são pressurizados. A T-45s o Director de Lançamento verifica se todos os parâmetros estão prontos para a missão, sendo também verificado que o espaço aéreo está pronto para o lançamento. A sequência de ignição é iniciada a T-3s. A T=0s o foguetão abandona a plataforma.

Abandonando a plataforma de lançamento, o Falcon-9 inicia uma série de manobras para se colocar na trajectória de voo correcta.

Tempo (h:m:s) Evento
00:01:12 Máxima pressão dinâmica (MaxQ)
00:02:11 Final da queima do 1.º estágio (MECO)
00:02:15 Separação entre o 1.º e o 2.º estágio
00:02:23 Ignição da primeira do 2.º estágio (SES-1)
00:02:28 Início da queima de regresso
00:02:58 Separação da carenagem de protecção
00:03:23 Fim da queima de regresso
00:05:59 Início da queima de reentrada do 1.º estágio
00:06:14 Final da queima de reentrada do 1.º estágio
00:07:12 Início da queima de aterragem do 1.º estágio
00:07:39 Aterragem do 1.º estágio
Informação não revelada Final da primeira queima do 2.º estágio (SECO-1)
Informação não revelada Início da segunda queima do 2.º estágio (SES-2)
Informação não revelada Fim da segunda queima do 2.º estágio (SECO-2)
Informação não revelada Separação dos satélites Starshield

O foguetão Falcon-9

Baptizado em nome da nave Millenium Falcon da saga cinematográfica “Guerra das Estrelas”, o foguetão Falcon-9 v1.1 foi um lançador a dois estágios projectado e fabricado para o transporte seguro e fiável de satélites e do veículo Dragon para a órbita terrestre. Sendo o primeiro foguetão completamente desenvolvido no Século XXI, este lançador foi projectado desde o início para ter a máxima fiabilidade. A sua simples configuração de dois estágios minimiza o número de eventos de separação (staging) e com nove motores no primeiro estágio, pode completar a sua missão em segurança mesmo na possibilidade de perda de um motor.

O Falcon-9 fez história em 2012 quando colocou a cápsula Dragon na órbita correcta para uma manobra de encontro com a estação espacial internacional. Desde então, foram realizadas múltiplas missões para a ISS transportando e recolhendo carga para a NASA. O Falcon-9, bem como a cápsula Dragon, foram desenhados na base do desenvolvimento de um sistema de transporte de astronautas para o espaço.

O foguetão Falcon-9 Upgrade, ou Falcon-9 FT, (a seguir designado simplesmente como “Falcon-9”) representa a mais recente evolução deste lançador. De forma geral, o Falcon-9 tem 68,4 metros de comprimento, 3,7 metros de diâmetro e uma massa de 541.300 kg. O veículo é capaz de colocar uma carga de 13.150 kg numa órbita terrestre baixa ou 4.850 kg numa órbita de transferência geossíncrona.

O primeiro estágio do Falcon-9 está equipado com nove motores Merlin (Merlin-1D) e tanque de liga de alumínio e lítio que contêm oxigénio líquido e querosene RP-1. Após a ignição, um sistema de segurança fixa o veículo na plataforma de lançamento e garante que todos os motores são verificados como estando na força máxima antes de libertar o foguetão para o seu voo. Então, com uma força superior a cinco aviões Boeing 747 em potência máxima, os motores Merlin lançam o foguetão para o espaço. Ao contrário dos aviões, a força de um foguetão vai aumentando com a altitude – o Falcon-9 gera 6.806 kN ao nível do mar, mas atinge 7.426 kN no vácuo espacial. Os motores do primeiro estágio vão sendo aumentados em potência perto do final da queima do estágio para assim limitar a aceleração do veículo à medida que a massa do lançador diminui com a queima do combustível. O tempo total de queima do primeiro estágio é de 162 segundos.

Com os seus nove motores agrupados juntos na configuração ‘octaweb’, o Falcon-9 pode aguentar a falha de até dois motores durante o lançamento e mesmo assim conseguir atingir a órbita terrestre com sucesso. O Falcon-9 é o único lançador na sua classe com esta característica chave.

O motor Merlin vai encontrar as suas raízes aos motores das missões Apollo, nomeadamente o sistema de injecção baseado no motor do módulo lunar. O propelente é alimentado por uma única conduta, com uma turbo bomba de dupla pá que opera num ciclo de gerador a gás. A turbo bomba também fornece o querosene a alta pressão para os actuadores hidráulicos, que depois recicla para a entrada a baixa pressão. Isto elimina a necessidade de um sistema hidráulico separado e significa que não é possível ocorrer uma falha no controlo de vector de força por falta de fluido hidráulico. Uma terceira utilização da turbo bomba é o fornecimento de controlo de rotação ao actuar no escape da turbina de exaustão (no segundo estágio). Combinando-se estas características num só dispositivo aumenta-se assim de forma significativa o nível de fiabilidade do sistema.

O motor é capaz de desenvolver uma força de 654 kN ao nível do mar, 716 kN no vácuo, com um impulso específico de 282 segundos (nível do mar) e 311 segundos (vácuo).

A secção interestágio é uma estrutura compósita que liga o primeiro e o segundo estágio e alberga os sistemas de libertação e separação. O Falcon-9 utiliza um sistema de separação totalmente pneumático para uma separação de baixo impacto e altamente fiável que pode ser testado no solo, ao contrário dos sistemas pirotécnicos utilizados na maior parte dos lançadores.

O segundo estágio é propulsionado por um único motor Merlin de vácuo e coloca a carga a transportar na órbita desejada. O motor do segundo estágio entra em ignição poucos segundos após a separação entre o segundo e o primeiro estágio, e pode ser reiniciado várias vezes para colocar múltiplas cargas em diferentes órbitas. Para máxima fiabilidade, o segundo estágio está equipado com sistemas de ignição redundantes. Tal como o primeiro estágio, o segundo estágio é feito a partir de uma liga de alumínio e lítio.

O motor Merlin de vácuo (Merlin-1D de vácuo) desenvolve uma força de 934 kN e o seu tempo de queima é de 397 segundos.

A carenagem compósita é utilizada para proteger a carga durante a passagem do Falcon-9 pelas camadas mais densas da atmosfera. Quando a missão do Falcon-9 é o lançamento do veículo de carga Dragon, a carenagem não é utilizada, pois a cápsula possui o seu próprio sistema de protecção.

A carenagem tem 13,1 metros de comprimento e 5,2 metros de diâmetro. Fabricada em fibra de carbono, separa-se em duas metades utilizando um sistema de separação de actuadores pneumáticos semelhantes aos que são utilizados para a separação entre o primeiro e o segundo estágio.

A sequência de lançamento para o Falcon-9 é um processo de precisão ditada pela janela de lançamento tendo em conta a posição orbital a ser ocupada pela carga a bordo. Se a janela de lançamento é perdida, a missão é então adiada para a próxima janela de lançamento disponível.

Cerca de quatro horas antes do lançamento, inicia-se o processo de abastecimento – primeiro oxigénio líquido seguindo-se o querosene altamente refinado (RP-1). O vapor observado a sair do lançador durante a contagem decrescente é na realidade oxigénio a ser liberto dos tanques, sendo esta a razão pela qual o abastecimento de oxigénio líquido se mantém até quase ao final da contagem decrescente.

Lançamento Veículo 1.º estágio Local Lançamento Data Hora (UTC) Carga Recuperação
2025-298 580 B1093.9 VSFB, SLC-4E 14/Dez/25 05:49:00 Starlink G15-12 OCISLY
2025-299 581 B1092.9 CCSFS, SLC-40 15/Dez/25 05:22:10 Starlink G6-82 ASOG
2025-303 582 B1094.6 KSC, LC-39A 17/Dez/25 13:42:10 Starlink G6-99 JRTI
2025-304 583 B1063.30 VSFB, SLC-4E 17/Dez/25 15:27:50 Starlink G15-13 OCISLY
2026-001 584 B1081.21 VSFB, SLC-4E 03/Jan/26 02:09:16 CSG-3 LZ-4
2026-002 585 B1101.1 CCSFS, SLC-40 04/Jan/26 06:48:10 Starlink G6-88 ASOG
2026-003 586 B1069.29 CCSFS, SLC-40 09/Jan/26 21:41:00 Starlink G6-96 JRTI
2026-004  587 B1097.5 VSFB, SLC-4E 11/Jan/26 13:44:50 Pandora “Twilight” LZ-4
2026-005 588 B1078.25 CCSFS, SLC-40 12/Jan/26 21:08:20 Starlink G6-97 JRTI
2026-008 589 B1085.13 CCSFS, SLC-40 14/Jan/26 18:08:20 Starlink G6-98 ASOG
2026-011 590 B1100.2 VSFB, SLC-4E 17/Jan/26 04:39:51 NROL-105 LZ-4

Imagens: SpaceX e outros



Comente este post